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SUMMARY

By using traditional control concepts of gain root locus, the active suppression of a

flutter mode of a flexible wing is examined. It is shown that the attraction of the unstable

mode towards a critical system zero determines the degree to which the flutter mode can be

stabilized. For control situations where the critical zero is adversely placed in the complex

plane, a novel compensation scheme called a 'Dipole' filter is proposed. This filter ensures

that the flutter mode is stabilized with acceptable control energy. The control strategy is

illustrated by designing flutter suppression laws for an active flexible wing (AFW) wind-

tunnel model, where minimal control effort solutions are mandated by control rate

saturation problems caused by wind-tunnel turbulence.
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INTRODUCTION

Modern aircraft designs emphasize reduction of structural weight to enhance

aerodynamic performance. The resulting airframe flexibility often leads to the dynamic

aeroelastic instability called flutter. Active control techniques have been extensively

investigated to suppress flutter instability and expandthe flight envelope. As a step toward

harnessing the potential benefits of using active control for flutter suppression, an active

flexible wing (AFW) wind-tunnel experimental program has been initiated jointly by NASA

and Rockwell International Corporation [1 ].

Many alternative control concepts are being studied in this program to develop flutter

suppression laws to be tested in the wind-tunnel experimental program. The present report

summarizes the concept, design, and evaluation of a novel control scheme which results in

a robust, low complexity flutter suppression control law. Extensive simulation studies are

included to demonstrate that the control law meets all the design constraints set forth to

clear the control law for subsequent wind-tunnel tests.

BASIC CONTROL PROBLEM

The flexible equations of motion of the AFW wind-tunnel model at a fixed dynamic

pressure (q) and Mach number (M) can be approximated by a finite dimensional, constant

coefficient differential equation in state variable form as;

[x][0 ][x][ 0]= + u;y=Cx (1)
x -M-lK -M-tD x -M-IB

where x _ 9_n; u _ 9_m; y e _r and x is a set of generalized co-ordinates as'sociated with

the flexible modes. M, K and D are the generalized mass, stiffness and damping matrices.



B andC are the control and output distribution matrices respectively, u is the control vector

and y is the acceleration output vector at physical locations of the wing.

In order to understand the principal characteristics of the flutter phenomenon in a

control theoretic setting, the unsteady aerodynamic effects and actuator dynamics are not

initially included in the design model. Further only a single-input/single-output control

problem is examined. Throughout the text and figures the following short hand notation is

used to represent second order transfer functions,

J

s2 + 2_nS + COn2 = (_, o) (2)

A scalar transfer function representation of Eq. (1) can be written as,

y(s) kos2 ]-[n-I (_zi ' _zi)

U(S) - (_b' COb) _A (_Pi' COPi)
(3)

where I-I indicates continued product and the two zeros at the origin are associated with the

output being acceleration. The lightly damped zero/pole pairs (_zi' ¢°zi) and (_pi' ¢°pi) are

typically in close proximity forming the so called 'Dipole' structure. This structure allows

us to initially ignore the high frequency modes and examine a dominant two mode

approximation to Eq. (3) of the form;

zTIp(s) = kos2 (_¢' co_) (4)

r o(S) (;b, cob)(;t, c°t)

oo

where ZTl P is the wing tip acceleration and 8TE O is the trailing edge outboard control

surface deflection (figure 1). The flutter dynamics can be adequately represented by the

strong interaction of a bending mode Pb (_b, cob) and a torsion mode Pt (_t, cot)-
!

Associated with these modes is a critical zero z c (_c, coc) whose relative location in the

complex plane with respect to the dominant modes plays a key role in the feedback

stabilization of the unstable flutter mode. Figure 2 gives a locus of the poles/zeros of
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Eq. (4) asa function of the dynamic pressure, q, for the AFW symmetric flutter model.

At low dynamic pressures the torsion mode Pt forms a dipole with the critical zero zc. As

the dynamic pressure is increased the dipole bond is broken and the torsion mode becomes

more controllable and observable. Indeed the dynamic pressure root locus is typical of all

input/output pairs of the active flexible wing (AFW) model.

Now consider a simple feedback gain stabilization scheme as shown in figure 3a for a

high dynamic pressure condition (open-loop unstable). As the loop gain p is increased, the

gain root locus can take either of the forms shown in figures 3b and 3c. In the AFW case

the locus takes the form of figure 3c. With increased feedback gain the flutter mode Pb is

attracted towards the critical zero z¢. The incremental gain required to improve the flutter

mode damping progressively increases as Pb approaches zc. In the limit as p _ co, Pb and

zc ultimately form a dipole. Thus the location of zc strongly influences the gain required to

stabilize the flutter mode and also the achievable improvement in the flutter mode damping.

The allowable gain for feedback stabilization is restricted due to i) actuator rate

saturation caused by control motion due to wind-tunnel turbulence, and ii) the possibility of

driving some high frequency modes unstable while stabilizing the flutter mode. Thus the

design of the control law focuses on the selection of a sub-optimal dynamic compensation

scheme to stabilize the flutter mode while meeting the above stated gain constraints. The

controller also should possess adequate gain/phase margins to account for parameter

uncertainties invariably associated with aeroelastic modeling.

AFW SYMMETRIC FLUTTER CONTROL PROBLEM

Design Objectives and Constraints

The primary objective of the design is to increase the flutter onset dynamic pressure

boundary. The uncontrolled symmetric flutter for the AFW model in a Freon test medium

at M - 0.9 is predicted to occur at q" = 245 psf. Figure 4 illustrates the violent nature of the
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flutter divergenceof theAFW wind-tunnelmodel. Forcomparison,themild divergenceof

the B-52 aircraft is also included for which an active flutter suppressionlaw was

successfullyflight tested[2]. This comparisonhighlights the severityof theAFW flutter

control problem. In addition,asmentionedearlier, theAFW model will besubjectedto

significantlevelsof wind-tunnelturbulence.Consequentlythis setsa major constrainton

theallowablefeedbackgainsto stabilizetheflutter modedueto RMScontrolratesaturation

problems.Finally modelingignorancedictatesthatadequatestabilitymarginsbeprovided.

System Model

The AFW system can be represented as a linear time-invariant state variable model for

a fixed dynamic pressure and Mach number. The finite element model refined by ground

vibration tests has eight elastic modes and eight unsteady aerodynamic lag states. For the

controller design a single-input/single-output configuration was selected to properly

understand the control problem and synthesize the dynamic compensation. Among the set

of acceleration sensors available (figure 1), the wing tip sensor was selected since its

response peaks near the flutter frequency and has a substantially attenuated response for

higher frequency modes. The trailing edge outboard surface was chosen as the control

surface since it has the highest control effectiveness and consequently results in low

feedback gain solutions. The trailing edge outboard actuator also has the highest natural

frequency compared to the other actuators. However, due to engineering constraints the

actuator has the lowest control rate capability (225 deg/sec - no load). The composite

model has 27 states including a third order actuator model. When evaluating the gust

response of the system a two state Dryden turbulence model was added to the composite

system model.

!
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AN ANALYTICAL SOLUTION TO THE FLUTTER CONTROL

PROBLEM

Figure 5 shows the pole/zero map of the AFW system at a reference condition of

M = 0.9, -q = 300 psf with the test medium being Freon. Using this model, a simple gain

feedback as suggested in figure 3a was attempted to stabilize the flutter mode. Figure 6

gives the resulting gain root locus. Although the flutter mode has been stabilized, one of

the higher frequency modes is driven unstable. One pair of real roots coalesces and form a

conjugate pair with high natural frequency. It is apparent from the root locus that a high

gain solution has resulted. The primary cause for this situation is the adverse location of

the critical zero zc near the jto axis (-3.6 + j 70). Since zc depends on the sensor/actuator

locations, alternative sensor positions were evaluated to get more favorable zero locations

(figure 1). The trailing edge outboard actuator was retained due to its superior control

power. No substantial improvement in the damping of the critical zero resulted. Thus, the

static high gain design reveals that some form of frequency weighted feedback gain

(dynamic) compensation is required.

The simplest dynamic compensation is a lead/lag filter of the form (s+tx)/(s+13). This

compensator structure was explored in [3] using a multi-input/multi-output formulation.

The study yielded stable designs with low feedback gains in the flutter frequency range

(50-80 rad/sec), resulting in acceptable RMS control deflections and rates subject to wind-

tunnel turbulence. However, the gains at the low frequency spectrum (0.5-2 rad/sec) were

substantially higher due to the large separation between the zero (ct) and the pole (l_) of the

lead/lag filter that was needed for the solution. This control law is prone to control

saturation problems resulting from the closed-loop system being excited by. error signals

generated through quantization effects of low resolution analog-to-digital conveners. A

similar single-input/single-output solution with second order compensation proposed in [4]

is also prone to this saturation problem. The primary motivation to seek these filter
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solutionswas to make sure that the filter poles were well damped so that closed-loop

instability due to filter root divergence is avoided.

In light of the above experience, the problem of finding a minimal gain solution was

reexamined using the analytical framework of Eq. (4) and the generic root locus of

figure 3c. As observed before, the migration of the unstable flutter mode into the left half

complex plane is inhibited by the presence of the critical zero. In order to alleviate this

problem the compensator was allowed to have low damped poles with a structure of the

form;

H(s) = (_zf' ¢Ozf)

(_pf, O)pf)
(5)

Figure 7 is a schematic of the new compensation scheme. An anti-aliasing filter is

used since the compensator is mechanized on a digital computer. A washout filter is

included to eliminate acceleration sensor bias errors and does not substantially contribute to

the compensation. The filter structure of Eq. (5) suggests one obvious solution, namely to

have the filter pole cancel the effect of the critical zero (pole/zero cancellation!) and have the

zero of the filter moved farther into the left half plane. Figure 8 is the resulting root locus

(M = 0.9, "q - 300 psi) with the filter pole pf at -3.6 + j 70 and zf at -70 + j 70. It is

apparent that the flutter mode has been stabilized without disturbing the other modes. Thus

a minimal control effort solution has been derived. Since the filter pole pf forms a dipole

with the critical zero zc the compensator filter H(s) is called a 'Dipole' filter.

The analysis in this section has thus: i) identified the fundamental constraint for

feedback stabilization of the flutter mode in terms of the adverse location of a system zero
I

designated as a critical zero ze, ii) recognized the need to allow the selection of low damped

roots for the compensation filters in the proximity of the critical zero to effectively alleviate
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thezero'sunfavorablelocation in thc complex plane and iii) provided a simple analytical

solution in the form of a 'Dipolc' filter to stabilize the flutter mode with minimal gain.

PRACTICAL IMPLEMENTATION ISSUES

The dipole filter solution presented in the previous section obviously raises questions

such as" i) how valid is the existence of the critical zero, ii) how accurately can it be

determined, and iii) how sensitive is the proposed dipole filter solution is to variations in

the location of the critical zero. Since the modeling structure of the aeroelastic system in the
i

form of Eq. (1) originates from the classical vibration dynamics of a multi-degree-of-

freedom spring-mass-damper system, it is reasonable to conclude the existence of a transfer

function zero in the vicinity of the dominant bending and torsion modes as depicted in

figure 2.

Accurate experimental determination of the damping of the critical zero by parameter

estimation techniques may be difficult since the zero almost forms a dipole with the torsion

mode at subcritical dynamic pressures (below flutter onset dynamic pressure) where the

plant identification experiments are conducted. As a first approximation zc can be taken as

the torsion mode Pt itself at the highest subcritical q. Thus the sensitivity of the proposed

compensation scheme to uncertainty in the location of the critical zero is important.

Towards this end the damping of the compensation filter root pf was progressively

increased and the gain root locus generated. Figures 9 and 10 depict the root loci for filter

poles at -7 + j 70 and -10 + j 70, respectively, for a reference condition of M = 0.9,

- 300 psf. The filter zero remained fixed at -70 + j 70.

Comparison of the root loci in figures 8 through 10 reveals that no substantial change

in root locus branch patterns has resulted. However, as the filter pole damping is increased

the static gain (k) required to stabilize the flutter mode increases. Also, as the filter root

damping is increased the sting mode (mode with the lowest natural frequency) is predicted



to becomeunstable at large gains. The pole/zero cancellation design has excellent gain

margin but very poor phase margin. The increase of the filter pole damping has the effect

of trading gain margin with phase margin. Of course, excessive increase in the filter pole

damping renders the compensation scheme ineffective. A filter pole location at

pf = -7 :t: iT0 was found to be the best compromise solution from both gain and phase

margin considerations. This sensitivity study also substantiates that the proposed analytical

solution is not overly sensitive to accurate knowledge of the damping of the critical zero.

Nonlinear simulation studies, to be discussed subsequently, also corroborated this

observation which was based on linear analysis.

CRITERIA FOR VALIDATING CONTROL LAWS

The following criteria are set up to evaluate the performance of the control laws with a

view toward certifying them for subsequent evaluation in the wind-tunnel test program.

i) Gain margin of + 6dB and phase margin of + 45 deg.

ii) No RMS control rate saturation should occur for 1 foot/sec RMS input.

iii) Stability robustness throughout the operating dynamic pressure range (50--350

psO.

iv) Stability robustness to modeling uncertainty introduced by varying the vibration

mode frequencies and damping.

The primary tools for evaluating the control laws are: i) a nonlinear batch simulation of

the AFW system designated as the 'ACSL' simulation [1] and ii) a time synchronized

scaled-real-time simulation with the digital control computer in-the-loop and designated the

'Hot Bench' simulation [1].

Among the criteria listed above, the RMS rate saturation constraint can be used to
I

estimate the upper bound on the feedback gains. Assume the gust response is dominant at

the flutter frequency. Then the control deflection, assuming simple harmonic motion, is

given by;
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_1"£O- k {TIP sincot (6)

where to is the flutter frequency (approx 70 rad/sec). Then the control rate is

t_q.Eo - k to Z'TlP cos tot (7)

The peak no load rate capability of the TEO surface is 225 deg/sec. This translates to

an RMS rate of 75 deg/sec assuming random excitation. From Eq. (7), for to = 70 rad/sec

and max RMS _TEO = 75 deg/sec, the max RMS 8TE O = 1.1 deg and maximum control

gain k - 1.1 deg/g at the flutter frequency. Notice in this analysis that the reduction of

control rate capability due to aerodynamic load (hinge moment) has been neglected. This

effect is, however, explicitly included in the ACSL simulation.

LINEAR SIMULATION RESULTS

A single-input/single-output output design, designated Control Law 1, using the

trailing edge outboard control surface and wing tip acceleration sensor was analyzed. The

dipole filter pole pf is located at -7 + j 70 and the zero zf is located at -70 + j 70. The

nominal feedback gain to stabilize the flutter mode is k = 0.11 deg/g. The washout filter is

the same as in figure 7. The frequency response of the washout filter and the dipole filter

in cascade is shown in figure 11. The corresponding time response of the control motion

&rEo to a 1 g step wing tip acceleration input is given in figure i2. The controller is

evaluated over a range of dynamic pressures (100-400 psf) at M = 0.9 in Freon using

linear models at discrete dynamic pressure conditions. The fixed gain controller exhibited

stability robustness with respect to the dynamic pressure variations. Figure 13 depicts the

damping of the dominant modes for a range of dynamic pressures. Notice that the
!

structural damping (g = 2_) of the closed-loop roots is in excess of the minimum

requirement throughout the dynamic pressure range.
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Using a variational model approach in the linear simulation setup, the stability

robustness of the controller to modeling uncertainties was also analyzed. The basis for

derivation of the variational model (VAR) was an analytical ten flexible mode finite element

model (FEM) refined to match the eight dominant modes observed during ground vibration

tests. The VAR model differed from the final reference models (GVT) used in the Linear,

ACSL and Hot Bench simulations in the method used to correct the modal characteristics to

match ground vibration test data. Without going into the details of the model derivation, it

was considered sufficient to use the VAR model as a perturbation model for sensitivity

analysis. Figure 14 shows the differences in frequency response of the FEM, GVT and

VAR models (M = 0.9, q - 300 psf). The controller performed satisfactorily when the

VAR model is substituted for the GVT model. As a result, the controller is robust to a

simultaneous gain variation of approximately 5 dB and phase lag of 15 deg near the flutter

frequency. However substitution of the FEM model makes the closed-loop system

unstable. This is to be expected because of the large phase deviations, nearly 80 degrees,

in the flutter frequency range between the GVT and FEM models. Thus the feedback

system is deemed robust to moderate modeling uncertainties.

ACSL SIMULATION RESULTS

Control Law 1

The analog form of Control Law 1 was converted to digital form using the Tustin

transformation with a sampling interval of 5 milliseconds. The digital form of the

controller was used in the ACSL and Hot Bench simulations.

fz lia_maz a,

The gain margins were determined in the ACSL simulation by varying,a scalar loop

gain parameter from the nominal value s_et by k (similar to the root locus gain parameter p

in figure 7). The gain is increased/decreased until the closed-loop system becomes

unstable. The onset of instability is determined when the system response diverges to a
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doublet input applied to the control channel. Figure 15 shows a typical ACSL simulation

time response history. Figure 16a summarizes the gain margin boundaries for Control

Law 1. The nominal gain for these results is k = 0.33 deg/g. The controller meets the

gain margin requirements up to a dynamic pressure of 350 psf. An advantage of the

controller is the infinite gain reduction margin in the subcritical dynamic pressure range

where the open-loop system is stable.

Pdlag.mazgi 

In the ACSL simulation there is no convenient way to introduce frequency independent

phase shift as the phase margin definition demands. However, from a practical perspective

phase uncertainty in a system is generally manifested as a frequency dependent phase lag

J

which is typically modeled as a pure time lag and approximated by Pade filters with

appropriate cutoff frequencies. For the present study a simpler mechanization of the time

lag is adopted. The ACSL simulation has a fourth order Butterworth filter to simulate the

anti-aliasing filter. The nominal cutoff frequency, fco, was 100 Hz. By reducing the

cutoff frequency, fco, it was possible to generate phase lag in the flutter frequency range

without introducing gain attenuation. Figure 17 shows the gain and phase characteristics of

the Butterworth filter as a function of fco in Hz. By varying fco, phase lag was introduced

into the system until the system becomes unstable as determined by response trajectories.

The loop gain was held constant at k = 0.33 deg/g. The phase reduction margin was

computed and the frequency of divergence was also noted. The divergence frequency

indicates which branch of the root locus is driven to the right half complex plane.

Figure 16b summarizes the ACSL phase reduction margin results. The phase margin

requirements are met up to a dynamic pressure of approximately 325 psf.

RMS acceleration /control response to wind-tunnel turbulence.

The ACSL simulation includes an appropriately scaled Dryden turbulence model to

generate random wind-tunnel turbulence. This feature was used to generate RMS response

12



over a range of dynamic pressures for both open-loop (subcritical q) and closed-loop

system with a nominal gain k - 0.33 deg/g. Figure 18 summarizes the RMS response for a

1 ft/sec RMS gust input. The feedback system has lower RMS accelerations at the wing tip

compared to the uncontrolled system in the subcritical dynamic pressure range. The RMS

control rate and displacement are approaching the limits at a dynamic pressure of 350 psf.

Robustness of controller.

In the ACSL simulation the robustness of Control Law 1 to model ignorance was

evaluated by computing the gain and phase margins when the plant was changed from the

reference design condition M = 0.9 (Freon) symmetric. These off-design plant reference

conditions are: i) Freon, M = 0.9, antisymmetric model, ii) Freon, M=0.8, symmetric and

antisymmetric models, and iii) M = 0.5, symmetric and antisymmetric models with air as

test medium. The controller performed satisfactorily up to 350 psf with all Freon models

and up to 325 psf with the air models.

From the results of the nonlinear simulation studies it can be concluded that Control

Law 1 will perform satisfactorily up to a dynamic pressure of 350 psf with Freon as the test

medium. This indicates that the controller increases the operating flutter dynamic pressure

envelope by 40 percent, while meeting all the criteria set forth to certify the control law for

wind-tunnel test.

Control Law 2

With a view toward reducing the control activity on the trailing edge outboard surface

due to wind-tunnel turbulence, a second control law was considered. The effect of

including a second control surface to share the work load was investigated. The candidate

control surfaces were the leading edge outboard and trailing edge inboard surfaces. The

trailing edge inboard surface is preferred since it is favorably loaded aerodynamically.

Figure 19 shows the schematic of Control Law 2. The dipole and washout filters are the
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same as used in Control Law 1 and the control gain ratio Ik2/kll was optimized using root

locus analysis. Figure 20 shows the gain root locus for a gain ratio Ik2/kll = 0.5. The

feedback polarity for the control surfaces was chosen such that the rates on the outboard

surfaces were reduced. (In this case the character of the structural modes required that the

control surfaces have opposite signs.) Table 1 summarizes the achievable reduction in

RMS control activity of the trailing edge outboard surface for two different gain ratios,

Ik2/kll. ACSL simulations revealed no substantial reduction in gain and phase margins for

a gain ratio of 0.5. For a gain ratio of 1, at higher dynamic pressures (greater than 325 psf)

gain margin requirements are not met. Thus Control Law 2 was certified for experimental

use using Ik2/kll = 0.5.

HOT BENCH SIMULATION RESULTS

After satisfactory completion of the nonlinear simulations Control Law 1 was

evaluated in the Hot Bench simulation. The controller channel was excited by a doublet

pulse and the system response was recorded as the dynamic pressure was progressively

increased. The controller stabilized the system up to q = 350 psf. This result is consistent

with the ACSL simulation results. The system became unstable at about 360 psf. The

AFW digital control computer adds an additional phase shift into the loop due to the

sampling effects (sampling rate = 200 samples/sec in real time). Figure 21 shows the

frequency response of the control computer indicating the classical delay transfer function.

The computer adds a phase lag of 18 deg at 10 Hz. Sinusoidal frequency sweep excitations

were applied to the control channel for both the open- and closed-loop systems at a

subcritical dynamic pressure of 200 psf. Figure 22 compares the wing tip acceleration

response. The attenuation of the peak response due to feedback is apparent. Figure 23 is a

comparison of the transfer functions derived from sine sweep experiments. The frequency

signature of the closed-loop transfer function is substantially different. There are two peak

responses at 7.6 Hz and 13.8 Hz as compared to the single peak at 10 Hz for the open-loop
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case.Indeedthischangein frequencysignature can be effectively used in wind-tunnel tests

at subcritical q to confirm satisfactory (predicted) performance of the controller. This

frequency signature can also be inferred from gain root locus plots. The transfer functions

were also derived using linear models to correlate the Hot Bench results. Figure 24 shows

the transfer functions for the same reference condition of q = 200 psf. To generate these

plots a first order Padc approximation at a cutoff frequency of 100 Hz was added to the

model to account for the _ control computer phase delay. The match between the linear

analysis and Hot Bench is excellent.

CONCLUSIONS

The control of the symmetric flutter divergence of the AFW wind-tunnel model has

been studied. The following conclusions can be drawn;

i) The presence of a critical system zero close to the j0) axis sets a limit on the

minimum static feedback gain required to stabilize the flutter mode. The critical

zero also sets a limit on the achievable improvement in the flutter mode damping.

ii) Static gain solutions are not practical since they tend to drive high frequency modes

unstable and violate the RMS control rate constraints in the presence of wind-

tunnel turbulence. This leads to the selection of a dynamic compensation scheme to

stabilize the flutter mode.

iii) In order to effectively compensate for the adverse location of the system zero and

to achieve minimal control effort solutions, poles of the compensator filters should

be chosen with low damping close to the critical zero. Using this hypothesis a
I

compensator filter called a 'Dipole' filter is derived which analytically provides a

simple robust compensation scheme for flutter suppression.
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iv) Linear, ACSL, and Hot Bench simulation studies indicate that the simple dipole

filter compensation scheme effectively increases the operating flutter dynamic

pressure boundary by 40 percent, while meeting all the design constraints such as

gain/phase margins, RMS control displacement and rate limits, and robustness to

dynamic pressure variations and modeling uncertainties.

v) Although the trailing edge outboard control surface alone is capable of achieving a

40 percent increase in flutter dynamic pressure boundary, adding the trailing edge

inboard control surface with a control gain ratio of 0.5 reduces the RMS control

rate activity of the trailing edge outboard surface.
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Table 1 RMS res

Control Gain Gain -

Law k I Ratio q
(deglg) Ikl/k2_l (psf)

1 0.33 0 250

1 0.33 0 300
i

2 0.22 0.5 250

2 0.22 0.5 300

2 O. 11 1.0 250

com mfisons - Control Laws 1 and 2.

Z'TIP ZTEO _TEO _TEO _I _TEI

(g's) (g's) (deg) (deg/s) (deg) (deg/s)

0.63 1.70 0.51 47.2 _ _

0.74 2.12 0164 59.0 _ _

0.67 1.68 0.42 37.8 0.2 17.2

0.81 1.96 0.47 46.0 0.24 22.5

0.62 _ 0.24 19.0 0.22 17.6

<1
//

/%' @
/

///

@1

®E

Act,_o._orI I

Sg, lhGOr O

l, Leading Edge DL4tbo_rd

2, Trculing Edge Inboc_rd

3. Tr-_iting Edge Dutboarcl

4. Wing Tip

5. Tip Boom

Figure 1 AFW sensor and actuator locations.
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